Understanding the Neural Mechanisms that Control Swimming Speed in Zebrafish Larvae
Animals often use distinct gaits to move at different speeds, and this requires the engagement of distinct neural circuits. Zebrafish larvae use different motor patterns, and recruit different spinal interneurons, during slow and fast swimming. Currently, it is not known how the brain computes desired speed or relays this information to the spinal cord. We have developed a system to perform high-speed online analysis of tail kinematics in freely swimming fish, while presenting visual stimuli. We find that zebrafish will adjust their swim speed to track different moving patterns, and they do this by switching between two discrete motor patterns. We intend to discover the neural substrates responsible for this behaviour by imaging whole brain neural activity in restrained fish, during visually evoked swimming at different speeds in a closed-loop virtual reality environment. By thoroughly investigating the mechanisms of speed control in zebrafish larvae, from visual inputs to spinal circuits, we hope to uncover general principles of vertebrate locomotor control.